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On the Supremacy of Viscosity in the Control

of Turbulent Fluid Motion.

Summary :

Even for Reynolds numbers not small, the dynamic
effects including the dynamic velocity terms and the
pressure terms enumerated in the Navier Stokes equation
exert small average effects on the turbulence features
when compared with the effects of viscosity.

This new finding points to the linearization
of the turbulence »roblem. Non-linesr effects of the
statistical deviations from the rendom distributi-n,

however, are not insignificent.

The theory 1s apvplied to the determination of the ratio

of the twc intenslitles of turbulence mixing, the one beilng the

shear mixing and the other the energy diffusion mixing.
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I. Introduction.

The turbulent fluld motion vpresents a problem in statistics.
It must be the aim of any real turbulence theory to sift experi-
mental and theoretical knowledge to the utmost, so that we may be
able to vredict a small number of relevant averages by the use of
as small a number of averaged variables as possible.

We have shown in Ref. (m) that even the restriction to three
such variables affords & good insight into the general features of
turbulent fluid motion. This encourages us to go forward in the
chosen direction. The present paper deals with refinements of the
mathems tical procedure. It brings our approach in line with the
branch of the current literature generally summed up as "statisti-
cal theory of turbulence." This is not difficult in vrinciple be-

cause an average lump flow is not quite unrelated to the components

of the velocity correlation dyadic. The lump picture and the abstract

correlation view are in harmony with each other. The correlations
appeal more to the abstract mathematician. The lumps seem to offer
more hope of progress to the physlcist who is aware of the danger
of pitfalls of pure abstract reasoning.

Time and space forbids .us to present a self-contained account
of the current statistical approach, The following is accordingly
directed to readers who are reasonably acquainted with at least the
two pioneér papers on the subject, by G.I. Teylor and Theodore von
Karman. Ref. (t) and (k). A relatively recent account by Agostini

may 2ls8o be:comsulted with profit. It gives a good idea about the

— [P
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2. II
present status of the theory, about its satisfactory aspects as well
as its weak ones. An excellent tranglation of Agostini's paper has
been made by J. Vanier, and is readily available. Ref. (a),

IJI, The postulates of the statistical’ theory.

-

All postulates employed in the statistical theory of turbulence
can be classified under the heading of three different principles.
They flow either from the physical theory, or from an attempt to sepa-
rate a turbulence motion from a basic motion, or lastly from some kind
of artificial specialization.

The physical theory by itself is not uncertain nor controver-
sial. It is exhaustively laid down iﬁ the Navier Stokes equations
in combination with the equation of continuity. It is‘implied that
the solutions devend also and in a most vroénounced way on the boundary
conditiomns clearly necessary or merely dsfumed. The Navier Stokes
equations are ordinarily stated with reference to incompressible fluids
only. When adopted in that special form, it is out of place to specu-
late again whether the fluid 1s assumed to be incompressible or not.

The division of the actual flow into a bangfg?bw and a turbu-
lence flow is quite generally resorted to. But it is not always
rezlized that this division is not unique. It will not do Jjust to
say that the basic flow is the average, and the turbulence flow is what
remains ovér and above the average. That is not precilse enough. The
division has also to include the boundery conditions.. Also the
averaging process can be carried out in more than one manmer and to
different degree and intensity. There is in fact no sharp demarca-

tioh line between the tufbulence flow apd the basic flow. If we
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3 I1
carry the averaging too far all motion becomes turbulence motion. If
hot far enough, the basic flow remains too involved.

Speclalization, such as to homogeneous flows and to isotropic
turbulence, 1s resorted to for dividing the difficulties of the
problem. It is attempted td investigate in that fashion different
aspects of turbulence by themselves. This is done with the expecta-
tion that later these different effects may be combined or superposed
to each other in some simple way. This subdivision and the postulates
necessary to effect it are again not unique nor precise, but they are
particularly tricky and readily lead to gapsin the logical procedure.

An orderly progress in the presentXly discussed theory requires
that the postulates necessary for applying these three principles
be introduced gradually and with greatest care. The decisions should
be delayed until they become immediately necessary in each individusl
case. That particular case serves then for illustrating and explain-
ing the scope of the postulate. It leads only to confusion if some
so-called definition is accepted as a dogma to serve as the basis of
the consequent research. The mathematical procedure includes then
"proving" that certain relations hold by trying to demonstrate that
they conform with the perhaps ambiguously stated or prematurely
adopted definitioms. |

It may seem strange that such reserved azttitude should also be
necessary with regard to the physical theory, which stands establish-
ed certain and rigid. But the boundary conditions are a matter of
discretion, and cannot be established without regard to physics. Navier

Stokes Stokes equations do not determine the boundary conditions.
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Sald equatlons are precise when applied to svecific solutions. But
there 1s no solution to apply them to; It 1s the very nature of the
turbulence problem that the precise solution must forever remain un-
known and unstated. The application of the equations in such cases
requires mental steps not apparent from the equations. The formu-
lated equations stand for broad principles, not for a narrow numer-
ical procedure. A full grasp of all implications of the equatious
has to be constantly resorted to.

All applied statistical theory is attended with some lack of
rigour. Thus for instance, the standard or Gaussian distribution is
often used even if it is not the true distribution. The theory deals
with incomplete, scant and uncertain data, and comelusions regarding
a shape have, so to dpea&k, to be drawn from its vague shadow. Under
such circumstences we cannot afford over-fine mathematical distinct-
ions to stand in the way of using quite workable and practical propo-
sitions, unprovable as they may be. The door to ingenuous and shrewd
guesses must not be closed. Simplifying assumptions should not be
re jected for lack of mathematical rigours unless it 1s demonstrated
that they lead to unacceptable conclusions. In such manner was the
kinetic theory of gases developed. The turbulence problem is a much
humbler problem, having no significance by itself but only having a
significance on account of engineering needs. Certainly, what 1is good

enough for fundamental physics 1s good enough for turbulence research.
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III. The correlation flow.

The correlation flow is obtained by = séalar'multiplication

of the correlation dyadic (temsor of second rank)

U= < t;V/ i

R 1s the correlation dyadic u; v, where the semicolon has no signi-

ficence beyond that of the empty space ordinarily employed for

indicating tensor multiplication. The symbol "i" denotes a unit vector.

An entire tensor field R 1s associated with esch point of the space.
Ezach field is in the associated space, and only v but not u varies
in this space. All variables depend besides on time,all averages
are time averages. The divergence 1s zero

Vv = O

because averaging leaves absence of divergence unchanged.

It 1s always postulated that the turbulence is reasonably
homogeneous so that the changes of the averages through the territory
of one lump are negliglibly small when compared with the averages
themselves. This postulate is often unrealistic.

The present discussion is restricted throughout to homogeneous
and incompressible fluids. The correlation flow is the average of
the turbulence motion at one polnt provided the aversge is only taken
while the velocity at that point 1s reasonably near to one predeter-
mined direction. That 1s certainly so for l1lsotropic turbulence. We
gsee or agsume that the correlati-n flow possesses a number of symmetric

features. It ls ordinarily assumed to possess an axls of symmetry
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parallel to the central velocity. This does not mean yet isotrovic
turbulence. We shall see or assume that the correlation flow possess-
es a number of symmetric features. It is ordinarily assumed to possess
an axis of symmetry parallel to the central velocity. This does not
mean yet isotropic turbulence. Only if the correlation flow is the
same for all directiong is the turbulence isotropic. We hope to be able
to reach tangible résults even in the case that the turbulence is only
aporoximately ad merely to some degree isotropic, by using suitable
averages of the correlation flows in different directions.

The correlation flows reach theorically up to the infinity.
They converge rapldly to zero, as we shall discuss in fuller detail
in Section 5. Still it is impossible to assign a sharp boundary up to
which the flows actively reach. A simllar situation was already faced
with our Hill vortices in Bef. (m), and is quite common in applied
vhysics.

There is a separate field or space function of correlation
dyadics and therefore also one of correlation flows for each point.
In that respect the correlation flow is different from the lump flow.
Also lumps haveé a physical reality, but correlations are merely prob-
ability welight functions. They change with the change of the entire
flow but they have no individusl history, because they have no in-
dividual physical existence. Thus, in a quasi-steady turbulent flow

the correlations and therefore the correlation flows do not change

The individual lumps chsznge each by themselves even thelr average
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never changes. The lump flow has always a history of chenge. It is
the plan of our irquiry to study the average history of the individual
lump flows a8 already done in Ref. (m).

The average lump flows are closely related to the core or inner
portion of the correlation flow. The two are not strictly identical
but they suggest each other. The lump flows, even the average lump
flows, are a physical reality and it is not obvious that a certain
correlation flow corresponds to one lump flow only. The study of
such detail questions 1s however contrary to the plan of a statistical
approach. We shall never know either of the two flows with any pre-
cision. The distinction does not appear relevant at this state of the
inquiry.

We plan to disregard the distinctions between the core of
the correlation flow and' the lump flow , except for a proportionality
factor for the velocity magnitudes. The strength of the lump flow
in relation to the strength or energy density of the turbulence de-
pends on the average lump distance. We plan to present an inquiry
about that in a later paper. The vresent paper deals with the

supremacy of the viscosity only.
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IV. Correlation dynamics

In current literature on the statistical theory of furbulence
the term "dynamics" designates the study of the time changes of the
correlation dyadic of pairs of simultaneous velocities., If the flow
is quasi-steady, there is not any such change. But the theory is
mostly applied to isotroplc turbulence. Then the turbulence always
decays and the correlation dyadic changes.

The fluid has to rely on pressure effects for the preservation
of demnsity. The current literature notes that nevertheless, for
isotroplic turbulence, the pressure terms of the Navier Stokes equation
cancel out by averaging, and leave no trace in the equation describing
the history of the correlation. The correlation dyadlc undergoes
changes just as if there were no pressures acting. Thls propo-

sition is ordinarily accepted on the authority of von Karman,

Ref.(k). The proof or demonstration given there seems to be not
generally accepted. Most authors do not discuss this point. Agostini,
Ref. (a), page 69, discusses the disapnearance of the scalar product
of the vélocity and the pressure gradient, not their dyadic product.
Both products show equal response or non-response to the pressure.
Agostini does not accept the proposition. A few pages later, Ref.(a)
p. 75, he says: "When assuming the disappearance of the pressure term
to have proved." In effect he repudiates with these words the proof
he has himself offered and rejects the different proof of von Karman
which he must have studied carefully. The present author, while
rezlizing that BRef. (k) Section 7 is merheps not quite as lucid as 1t
could be in view of the simplicity end directness of the reasoning

presented, still does not find any error or fault either in the
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postulates employeéd nor in the rather primitive and elementary steps
taken. The pressure térms do disappear. It is however noted that the
demonstratioﬁ in said Section 7 holds equally fdr any other scalar
variable subjeéct to the condition of statistical isotropy. Nothing
ls introduced in Section 7 having reference to the scalar (7;{;7/
representing the pressure. This widens the scope of applioation'of
the result of Section 7 in that 1t apn»nlies to all iéotrbpio séaiar
variables, but it also narrows it unnecessarily in that it restricts
the disappearance of the correlation dyadic to a product of the
velocity and of a vector belonging to aﬁ irrotational véctor field.

The final outcome apﬁears in quite a different light when
relying more on physical grounds and léss on mere geometry and
postulates. The pressure terms are then seen to average out without
having to rely on pressure gradlents being derived from a scalar
potential. They average out for a much broader reason, namely because
the pressure is an even function of the velocity. If all turbulence
velocities are permitted to be reversed, the pressure distribution
would remain what 1t was before, without changé of sign. It 1s there-
fore reasonable to assume that for each pressure value all velocities
occur as often in one direction and magnitﬁde as in the opposite
direction and the same magnituge. ihis leads immediately to the
disappearance of the pressufeu&élocity correlation gradierit. Neilther
a potential of the pressure force, nor isotropy of the turbulence motion

1s necessary for proof. Now, this apparertly new mode of reasoning

H
it
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9.
i1s of larger signifimmuce than just furnishing a new proof for an
old and long accevted propositién. It widens the scope of appli-
cation to less restricted turbulence amd to other terms of the
equation, It directs our atténtion to the remaining dynamic pres-

sure terms of the Navier Stokes équation. They can be written

i;Z»(?Zy Z{) and they are also an even function of the velocity.
Exactly the same reasoning that holds for the pressure terms applies
alsp to the dynamic velocity terms. These terms willl also cancel
out on the average for the history of the correlation dyadic and of
correlation flow. That puts.the theory in an entirely new light.
Only the viscosity terms remain, governing: the correlation dyadic

Y

. e we .+« and the correlation flow, even 1if the

iy i

Beynolds number is not particularly small.

Retaining merely the viscosity term was already considered by
von Karman, Bgf. (k) Section 10, but expressly restricted to "small
Beynolds numbers." We see now that the suvremacy of the viscosity
is quite general. Agostini, Ref. (a) Section 20, also discusses
this discounting of the dynamic velocity terms, but with apology
and little faith. He defends 1t by stating thet it 1s mathematic-
ally convenient but physically quite difficult to justify. He over-
looked the physical justification presented in the present section
believing rather that there was none.

The correlation distnibution is thus seen to be subject to
a linear differential equation. This situation must however not

be accepted without reservation. What happens in the turbulence
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flow does not depend merely or the probability distribution but also

on the deviations from that probability. Secondary deviation effects i

PR S

e e g

SR "‘e‘,‘%;’v'"‘ ke :'

GERERG, PR

must not be overlooked. Section 7 of this psper illustrates this

remark.

V. The correlation flow at large distaneces.

It is necessary to clarify the meaning of the total momentum

integral, that 1s the-spacé integral of the correlation velocity

vector, .
5-1 /U 0&5
the integration extending through the entire space. Also that of

the space integral for the total polar moment of inertia of the

correlation velocity,

e St S
where v denotes the velocity, r denotes the radial distance from
the center, and 4S5 denotes the space elements.

With one H1ll vortex or with a similar correlation flow the
velocitles decline as the cube off the radial distance r. Hence the
momentum integral (5-1) does not converge. Its value devends on
the order in which the integration 1s cerried out, and on the
specification for the infinitely far boundary. Integral (5-2)
would even less converge.

We have to look deeper into this question of convergence. We

must call to mind that we are facing not one single lump but an

infinite assembly of lumps, moving in some random fashlon about in

the fluid. Their distribution 1s not entirely random in that there 1s

a bilas or correlation between the motion of adj)ecent lumps. This is

S

et ettt et e e A
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the case by reason of the physical laws governing what happened in
the past. Individual lumps have only a short life span, and they
are all created by the action of the same pressure dilstribution.

The momentum of the fluid 1s not changed but merely redistributed.
In consequence each lump traveling in one direction is surrounded
by a group of lumps having on the average a total momentum in the
opposite direction. Hence, the correlation spreads out far beyond
the territory of the lump. Also this momentum is evenly distributed
around the first mentiomed lump. There is no upver limit for the
statistical symmetry thus established. In consequence, the corre-
lation velocity declines much Taster than inverse to the third power
of the distance. It would at.ieast decline with the fifth power;

which

but there i1s no upper limlt of the exponent m by,the velocity may

K

declime with the distance. An expomential law ¢ seems appro-
priate and acceptable.

This must not be taken too literally. The sense of realilty
must be preserved. The higher the power, the slower the convergence,
and the larger the deviation from the mean. It will require a longer
and longer time to obtain the average and larger space too. The
average space integrals become very unreal as the power m goes up.

It is impossible to determine theﬁ experimentally. Bubt for the
following we do not have to go very high with the expoment m. In
consequénce of this physical reasoning we feel Justified in postulating
thet all correlation integral& occurring converge at large dlstance

from the origin,
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VI. On the preservation of the lﬁmg flow.

Additional comment regarding tﬁe minor part played by the
inertia effects in the ﬁupbulénce theory seems to be called for.

Jt 18 clear that each 1nd1v%dual'lump s attended by a pressure
distribution and by 1nertia‘effécts. We have already pointed out
in Section 4 why these ine?fia effects are secondary with regard
to average effects. . We would like to show this in? more tangible
way using the physical pictuée of one lump undergoing changes.

If a lump, under the action of inertia only, preserves 1its
compactness, the flow picture will, to some extent, be more or less
periodical, and therefore its time aversge will be constant. The
basic question 1s accordingly whgther a cbﬁpact lump flow, of the
type considered, which is a genéralized vortex ring in a non-viscous
fluld similar to the Hill vortex of Ref. (m) remains compact. The
opposite would be that the véortices spread out to become distributedr

through a larger and larger territory, i.e. in the absence of viscosity.

_V,The vortex rings of the correlation flow occur equally in both

directions but the vortex rings of the lumvs are ovredominantly in ome
direction. The vorticity distribution through the outer‘territory

of the corrélation flow can not count for the Iﬁmp, because that
consistg of many lumps rather than of an even aﬁd gradual distribution
of vorticity. Now 1n absence of/viscosity‘effects, the total energy
of the lump flow must remain constant. The total kinetic energy of
the flow depends on the compaotness\of the vortex distrihution.

The wider the same vortex lines are scattered and distribﬁted, the

smaller is the kinetic energy of the flow. Ref (1) Section 153.
It follows therefore from the
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energy principlé together with the fact that predominately only

vortex rings of the same direction are involved, that the lump flow

}
- |
must remain compact. 1t is therefore statistically self-preserving, |
|
except for viscoslty effects. !

VII. Diffusion ﬁ

We are interested in the diffusion of a quantity that is con- j
centrated in the vicinity of a point so that 1t converges towards zéro ﬁ
within reasonable distance from that point, as described in Section 5. :
We have to distinguish between the case that the space integral of ‘z
the quantity 1s zero 7-1 ﬁ 0/5 = O 1{

and when it 1s not. If the space integral 1s zero, the moment of inertis {
) !

of the quantity is comstant

7..2\%‘3?, 0/5 = const {

This follows from applying the diffusion equation

"~ 5257 =y V"V

to(7+«2)and applying Green's théorem, two times in succession.

[,

The surface integrals vanish in consequence of the assumptions made
regarding the decline of the quantity with increasing distance,
Section 5. Hence we obtain (7;2). More geqeral, the first moment
computed with the (2njth power of r unt being zero will remain
constant. It is practically sufficient for obtaining (7=2), thet
(7~1) be very small, that is that the Reynolds number(é£3/7;¢<37

be large where L and t denote reéspectively the largest dlstance s£nd

the largest time span involved in the experiment.
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‘We have to distinguish between the moment of Imertila of the
quantity being finite\or zero. There éxist type preserving distributions
of finite magnitude of the momenﬁ of inertia. They afé the fundamental
or dominating term of a combipatlion of type perserving functions.
They ar% the ones having a finite moment of inertia. The other ones
have thé moment of inertia zero.

These distributions, tybe-perserving under the action of viscosity
only, have already been introduced into the theory in Ref. (k).
However, they were only introduced fot small Reynolds numbers.
We see now that their field of usefulness is much broader, This
stetistically determined effect of viscosity brings this about. For
the time being, andiquite possibly for all time, it is necessary
to restrict ourselves to using one prototype flow to serve once for
all as correlation flow, and also by way of its innmer part, as pro-
totype lump flow. Going into the detsils of more than one lump
flow seems to be quite at vardiance with the policy of a statistical
approach. The orototype flow would take the place of the Hill vortex
in Ref. (m).

The dominant influence of the viscosity démonstrated in Section,
4 calls distinctly for the choice of a prototype flow selfipreserving'
in type under viscosity effects, not under dynamic effect as the
Hili vortex is. The first choice would naturally be the above funda-
mental self-preserving flow, having a finite moment of the velocity.
This flow has also already appealed to the authors of Ref. (k) and

(a) and has there,at leasy been alluded to. This tends to show that
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the supremacy of the turbulence was intuitively felt for meny years.
But 1t was not distinctly reocognized nor broadly, confidently: and
cheerfully proposed.

We proceed to give some detail specification for this apparent-

1{ popular and promising prototype flow.

,¥III. The orototype flow.

The flow 1s of aXial symmetry, and is symmetric fore and aft.

It can be described in a meridian plgne using polar coordinates r

and @ , the origin of the coordinate system coinciding with the lump

center. The distance from the axis of symmetry is then given by

r sin g[)

The flow has the radial component of the velocity v

n?

7-1 R = (05@ c
and a tangential velocity component at right angles to the radius

e T = -« Sin' P (1=-72%) ¢

The vorticlity of the flow 1s 1n consequence

-

7-3 € N Sin (p(f,?/z*)

.ahd thus 1ts ratio to the ﬁgial distance r sin is

b 2" (s-227)
This is comstant over the surface of all concentric spheres
r = const.

The axial velocity component 1s zero at all points of a

cylinder having unit distance from the axis of symmetry. All spheres

gbout the origin are surfaces of normal veiocity components proportional

to cos <¥:7‘

T I e e e =
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The flow shares this property with the surface of the H1ll vortex.

The momentum lntegral of the correlation flow converges, and
the total momentum is zero. The Specification for this unit corre-
lation flow describes only the type, but not the intensity. It
does not indicate the specific kinetic energy of the turbulence
flow. That depends on the intensity of the correlation flow, hamely
on the magnitude of its cemtral velocity, at » = O. -

There are several reference lengths available for the corre-
lation flow of the type (7-1, (7-2), the microscale ,;l of the
unit flow, Ref. (t) is equal to 2. The square of the radius of
the sphere dividing the points of positive vorticity from those of
negative vorticity 1is equal to 2.5. At thé surfece of that sphere,
the vorticity is zero.

The outer portion of the correlation flow merely describes
the statistical behavior of many adjacent lumps. The inner portions,

the core, describes one average lump. The description is particular-

ly immediate near the center. How far the territory of one lump extends

depends on how many lumps there are per unit volume. That depends

on the circumstances of the flow problem. Broadly spoken, the lumps
have a tendency to swell out by viscosity effects until they come

so close to each other that the mutual viscosity prevents further
swelling 6ut, The Reynolds number of the lump enters this picture.

If the Reynolds number of the lumps becomes too large, each lump
becomes a8 basic flow for smaller lumps. This points to an upper limit
of the lump Reynolds number, All this will be discussed and computed,

or at least estimated in a subsequent paper.
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IX. Turbulence decay.

Decaying turbulendefis by nmo means the principal problem of
tubulence réseatrch. Qﬁasi—steady turbulence 1§ much more important.
The decaying turbulence 1is howéver always prominently featured in the
litemrture on the subject, becéuse it 1s the only %turbulence vroblem
with respect to which some meager and incomplete theoretical results
have been presented. Experinmental information in that special field
is also available,

Only two extreme cases are treated theoretically, the initial
stage of turbulence decay and its final stage. The result regarding
the initial stage is more acceptable then the other result.

The initial motion is considered to be a cluster of many
smaller lumps, the cluster lump flow being the basic flow for the
true lumps. The smaller lumps take the energy out of the cluster
and dlssipate it soon, s¢ thet the asymptotic history of the energy
density can be obtained from thé energy of the cluster or gross motion.
The clusters agre thinly distributed and therefore do not interfere wih
each other,

Under all these circumstances there is an analogy between the
velocity of an ordinary‘lump eand the energy of the cluster motion.
Both are subject to ordinary diffusion. The shear mixing m is the
analogue to the kinemmbtic viscosity )7 . It happens thet the final
result is consistent with a constant mixing intensity, in that the
Beynolds number of the small lumps does not change. The linear size
increases propoftional to the square root of the time, and the wvelocity,

as we shzll see, decreases inversely to the same.
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.18. IX

While the space 1nte%ral of the cluster énergy gd//1 EAS
15 not zero, the energy being a positive quantity, still the rate of
decline of 1ts moment of inertia 3is smell. It 1is negligible ir comparison |
with its own magnitude, beéause r2 /tb)))‘is large, r denoting the
1lump size and the t the time available. Under these circumstances,
the moment of inertia of the energy does not chaenge noticeably.
Considering it to be dominantly comtributed by a standard self-pre-
serving diffusion distribution of finite moment of momentum of the
energg,Sthe energy at the cluster center would decline proport‘ionaif1 5
to t . But the cluster volume would increase proportional to t
so that the total energy per unit smce would appear to be inverse
to a linear function of the time. This is the result displayed in
the literature and 1t seems to be confirmed experimentally. There
are qui® a number of assumptions or lim;ting conditions involved, but
they can all be reasonably Justified.

The opposite case 1s considered the final stage of decay. The
current theory considers that then viscosity is supreme by reason
of the small Reynolds numbers prevalling. That is hardly any longer
turbulence, but 1is of interest as the asymptotic end of turbulence.
Theory considers that unlimited space is avallable, also unlimited
time to spread randommess all through this infinite space. The un-
eveness of the fluld motion assumes bigger and bilgger scale, without
1imit. There refiain always clusters,, bigger snd bigger in that the
biggest clusters are decaying Qb the slowest rate. In accordance
with the reasonipg presénted in Section‘7, the eﬁergy decay will

therefore be finally inverse to the 2.5th power of the time.
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Will it really? What hanpens finally depends entirely on the
boundary conditions in thelr widest senge including space and time.

Practically there will élﬁays bé~an énengy supply By way of some
noise éffect. The decay will then be finally zero. If on the other
hand, the fluid is surrounded by ﬁigid energy-proof walls, the
decay will finally be exvonential. Thé.decay'exponent‘will increase
from i1ts initial value -1 because the turbulénce becomes more crowded.
It is not unusual nor unreasonable to expect that -2.5 will be reached
and even surpassed. The question is whether the transient expondent
-2.5 1s less tramnsient than the adjacent exponents, so that the decay
curve 1ls 1n particularly intimate contact with a parabola correspond-
ing to thst exponent.

If there are good reasons to expect that, then the finding
of the present paper would make the exponent -2.5 even more
acceptable in that the requirement for a small Reynolds number would
be less severe,

The necessary condition for a good degree of preservatlion of
the exponent -2.5 1s that there are closely packed lump clusters
and that there 1s furthermore enough space and a supply of even wider
spread veloclity configurations or deviations to become the feeding
cluster flpws for the less spread-out ones.

The sémi—permanency of the exponenp -2.5 can not be decisively
indicated by experimental evidencé. The pregis}dn of the tests 1s not
large enough. There 1s however some experimental evidence to show
that the exponent associated with the weakest energy intensity

measureable 1s not inconsistent wlth an exponent of decay nm = -2.5.
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X. The ratio of the shear intemsities.

Any statistical apbroach to the turbulence problem must have
as 1ts immediate aim fhé'theoretical determination of the intensities
of turbulence mixing. Thig .mixing , 18 not the primary subject of the
present paper. The discuséion‘qf thé relative welght of the viscosity
effects and of the inertia effécts must precede such detérmination.
The determination of the intensity of mixing is a subject which
requires its own study and 1ts own papér. However, to offer im this
paper at least some advance in the direction of that determination,
‘'we will conclude it with the discussi~on of the ratio of the shear
mixing to the mixing for energy diffusion. That these two are
Jifferent from each other, and why, will asppear clearly in the follow-
ing deduction. It will also appear that the general form used by
us in Ref. (m) is consistent with the one immediately to be derived

for the two mixing intensities. The present paver justifies thus the

reasoning of this author 1n his nrevious paper on the subject.

The shear mixing expresses the transport of flow-wise momentum
by tHe lumps crossing the shear or gliding surfaces. If the average
velocity of the turbulence flow 18 U, then ‘the flux of the fluid
crossing in one or the other directioné is approximately u/3. The
momentum it btransports depends on the penetration depth. This is
somewhat analogous to the mean free path of thé kinetic gas theory,
but not closely anglogous. We disc¢ussed this already in Ref. (m)
and see now clearer for what reason the penetration depth f does not

dominantly depend on random effects but.on viscoslby effects.




«21. X
The velocity of a lump decrezses with time. The rate of

-1
decrease 1is at least proportional to t, , which is for lumps spaced

far apart from each other., In a quasi-steady shear flow, the lumps
are not spaced far apart, but on the contrary, they must be consldered
closely packed. In that case, as discussed in Section 7, the reference
velocities decrease proportional to t m2e2e This time, t, has to be
counted from an initial time point, such that at the time of the cross-
ing t = t4 = const/{ /6/ where i,z denotes any

referenceé length, such as for instancé the microscale.

1

Hence, the pegetration depth f resuTts Dronortional to

101 =/7ro/t %ﬁ//f/‘/ 0{/

N A -2
3 /STy KDY

Hence the shear mixing 1s proportional to

2
4, °
4/69‘;2 'A270 = ég:y‘ -4? Y

This is exactly the form proposed in RBef. (m).

For the diffusion of the energy we obtain a factor different
from this. As the lump penetrates into a layer of different energy
level, it does not really transport 1ts energy that fur, because
much of it has been dissipated on the way. Hence an applicable
penetration depth will be obtained, not by 1ntegrat;§g the velocity,
but by by integrating its vroduct with the energy still carried, and

dividing the outcone by the initial energy. Thus
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Hence it 1s demonstrated that the diffuSion mixing is much smaller

than the shear mixing. The ratio is about 3/13.

The smaller diffusion mixing would leave the influence of
the secondary augumentation pronounced. However, the present
derivation is based on the assumption that the lumps move stralight
ahead on the average. We have to examine how far that assumption

is justifiable in shear flow.
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